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Abstract
The ELISIMS project of Los Alamos National Laboratory has
applied diakoptics techniques for the solution of nearly-singular,
sparse systems of linear equations on parallel-computing
architectures. These techniques offer advantages over
conventional Krylov solution techniques for the solution of
nearly-singular linear systems. This paper discusses the diakoptics
algorithm presented by Aitchison, describes the implementation
of this algorithm on an extreme-Linux supercomputer, and
discusses performance considerations.

1 Introduction
The solution of large, sparse systems of linear equations is
important in many scientific applications. An example of such an
application is the solution of the nodal and mesh equations
describing Kirchoff's Laws that finds the voltages and currents of
an electrical circuit. Also, the solution of large systems of non-
linear equations by Newton's method reduces the problem to an
iterative procedure involving successive solutions of systems of
linear equations.

Methods for the solution of these large systems of linear equations
exist, from Gauss-Jordan elimination [9] to Krylov methods [4].
However, considerations of numerical analysis, including
accumulated round-off error and small differences between large
numbers, can pose problems for practical implementations of
these methods, especially for very large and nearly-singular
systems.

Diakoptics is an alternative to these methods that offers several
advantages, including scalability for parallel computing. Invented
by Kron [7] and related to the inverse of the sum of two matrices
[5], diakoptics solves a matrix equation by separating the matrix
into a number of sub-matrices that are individually easier to solve,
and composing their solutions to produce the solution of the
original system. The practical applicability of the diakoptics
method depends on the existence of a graph comprised of
sparsely-interconnected sub-graph clusters, which is a
characteristic of many physical systems for which a solution is
sought. The method is even more efficient when the sub-graph
clusters are themselves sparsely connected.

In this paper, we will review the diakoptics method as presented
by Aitchison [1]. We will discuss a practical implementation of a

diakoptics algorithm on an extreme-Linux supercomputer, with
consideration of scaling performance and application to the
computation of power flow in a commercial electric-power
infrastructure.

2 Diakoptics
Aitchison [1] presented a succinct description of the diakoptics
algorithm which we will repeat here for clarity.  We wish to solve
the equation dMz = , where M is a non-singular nn ×
coefficient matrix, z is the vector of unknowns, and d is the vector
of terms involving none of the unknowns. The matrix M can be
decomposed as the sum of two matrices BAM += .  Then the
solution z can be found in five steps as follows:

1. Solve for the vector x that is the solution of dAx = .

2. Let Br represent the r non-zero columns of B. Then solve the
equation rBAX = , where X is the rn ×  matrix whose
columns are the solutions corresponding to each of the
columns in Br.

3. Select the rows from X whose row numbers match the column
numbers of the non-zero columns of B.  Call this rr ×  matrix
Xr. Then solve the equation rrr xzXI =+ )( , where I is the

rr ×  identity matrix and xr are the elements of the solution
vector x (that was found in step 1) whose indices match the
column numbers of the non-zero columns of B. Note that zr is
the sub-vector of z comprised of the elements of z whose
indices match the non-zero columns of B.

4. Calculate the n-r remaining elements of z using the formula
rrnrnrn zXxz −−− −= .  Here, the subscript n-r indicates those

rows or columns corresponding to columns of B that were
zero.

5. Finally, arrange the elements from zn-r and zr to achieve the
solution vector z.

This algorithm will be advantageous if the matrix A has a
convenient structure such as block diagonal.  For a block-diagonal
matrix consisting of k blocks, step 1 separates into k independent
equations. Separate nodes in a parallel computer can solve each of



these k solutions. Similarly, the factorization and storage required
by step 1 can be re-used by each node to solve step 2 in parallel.
Algorithmically, step 3 is a chokepoint for a master-slave parallel
computing architecture, as it is a single step logically assigned to
the master node that must be completed while the slave nodes
wait. The partition of the matrix X among the slaves as a result of
step 2 can be utilized in step 4 to solve that step in parallel. Step 5
is merely a storage convention, and can be accomplished by the
slave nodes in parallel.

An elementary analysis of the effectiveness of the diakoptics
method follows from assumptions about the solution algorithm for
each step. The solution of a system of linear equations by a
method such LU-decomposition and backsubstitution is O(n3) [9],
while the subsequent solutions require repeating only the
backsubstitution which is O(n2). Let us assume that the matrix A
can be decomposed into k blocks of approximately the same size,
so that each sub-block of the block diagonal matrix will have n/k
rows.  Then step 1 is O[(n/k)3], step 2 is O[ 2)/( knr ⋅ ], and step 3
is O(r3).  If r is small, then the diakoptics method should be a 1/k3

improvement over solution by LU-decomposition. Of course, a
practical implementation that takes advantage of the sparsity of A
and its sub-blocks will modify this analysis.

3 Advantages of Diakoptics for Nearly-
Singular, Sparse Systems

3.1 Example:  Power-Flow Calculation

Figure 1.  Simple Transmission Network.

As an example of an application of diakoptics to a nearly-singular,
sparse linear system, consider the electric-power transmission
system shown in Fig. 1. The techniques for calculating power
flow are described in [13]. Power flows through transmission
lines in proportion to the phase-angle differences between
sinusoidal node voltages. The long transmission lines are
primarily inductors, leading to this dependence of power flow
upon phase angles. Figure 1 shows a 4-node transmission system
containing 3 transmission lines that connect the nodes to form a
simple tree.  Let the reactance of each transmission line be
normalized to 1.0.  Let the normalized resistance of each
transmission line be 0.01, which can be neglected.  There are only
two power injections, at the nodes at either end of the tree.  The
power injected at node 1 is 1 MW, and the power injected at
node 4 is -1 MW.  Let node 4 be the reference node, where the
phase angle is equal to zero by definition.  This problem qualifies
for solution by linear approximation of the non-linear power-flow
equations [13]. Then the power flow Pij through a transmission
line between nodes i and j is

ij

ji
ij x

P
θθ −

= , (1)

where θi and θj are the phase angles at nodes i and j, respectively,
and xij is the normalized inductive reactance of the transmission
line between nodes i and j.

The flow through each line must be 1 MW. Using a 100 MVA
base for normalization, a phase-angle difference of 0.01 radians is
required across each transmission line.  As the phase angle is zero
at the reference node, the consequent phase-angle vector, θ, is
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by inspection.

Imposing the conservation of power so that the sum of the flows
leaving a node is equal to the power injected at the node, Pi, leads
to a system of linear equations:

PS =⋅θ , (3)

where S is the matrix of transmission line susceptances,

ij
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S 1−= , i, j ≠ reference node
(4a)
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1 , i ≠ reference node
 (4b)

0=ijS , i, j = reference node (4c)
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1=ijS , i = reference node (4d)

The column vectors θ and P represent the phase angles and power
injections at each node, respectively.  Note that the power-
injection vector is normalized by an MVA base (typically
100 MVA), the power is positive when entering the grid
(generation) and negative when leaving the grid (consumer load),
the power injection at the reference node is always zero, and the
phase angles are in radians.

Then our problem can be written numerically as
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The inverse of the susceptance matrix S is
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1S . (6)

Multiplying right and left-hand sides of (5) by S-1 to solve for θ
yields the θ expected.



Now let us examine the solution of this problem using
diakoptics. Matching the variable names in Aitchison's algorithm,
we have Pd ≡ , SM ≡ , and θ≡z .

First, partition the coefficient matrix.  For our problem, let
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and
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B . (8)

Note that the equation dAx =  can be solved without inverting A
explicitly, but we will compute the explicit inverse for clarity.
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Then x is
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Note that B has two nonzero columns (r = 2).  Select these
columns and then solve for the matrix X as the solution to the
equation X = A-1Br.  Note that X will have r columns and n rows,
the same as Br.
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Next, select the rows of X corresponding to the nonzero columns
of B and solve for zr.
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Finally, calculate zn-r and compose with zr to find the final
solution z.
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where the values absent from zn-r have been represented explicitly
by the value NA for clarity.  Then the final solution is obtained by
substituting the values from zr for the NA values, obtaining
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as expected.

3.2 Near-Singularity of the Power-Flow
Problem and Advantages of Diakoptics

The susceptance matrix, S, described by equations (4) is nearly
singular. If not for the reference node, described by equations
(4c,d), this susceptance matrix would be identically singular. Note
also that the submatrix comprised of the rows and columns of S
excluding those corresponding to the reference node is itself
nearly singular, except for transmission lines adjoining the
reference node whose susceptances are added to the diagonal
elements corresponding to the neighboring nodes in the
transmission system.

The near-singularity of the power-flow problem exacerbates the
difficulty of the problem. In combination with the size of a typical
problem, which may describe tens of thousands of nodes in a
commercial transmission system, the solution of the power-flow
problem can be computationally challenging. Of critical
importance to the commercial electric-power industry, this
problem has been studied extensively [10, 11, 12]. The near-
singularity of the problem typically precludes the use of Krylov
techniques for the solution.



Diakoptics partitioning mitigates the difficulty of the power-flow
problem in two ways. First, obviously, the partitioning of
Aitchison's matrix A reduces the size (number of nodes in each) of
the individual independent problems. This partitioning speeds the
solution of the individual components. Typically, depending on
the solution method, the solution of these independent
submatrices of A can be reused many times in Aitchison's step 2
(see example, equation (11)). Second, the partitioning reduces the
proximity to singularity of these independent sub-problems. The
partitioning described in equations (7,8) remove off-diagonal
elements of the susceptance matrix (corresponding to the
susceptances of transmission lines between partitions) without
eliminating the contribution of these lines' susceptances to the
diagonal elements (equation (4b)). So the solution of the sub-
problems is improved by diakoptics, both by reducing the size of
the coefficient submatrices to be solved and making these
submatrices less singular.

4 Master/Slave Diakoptics Implementation
The diakoptics partitioning of the coefficient matrix into
independent submatrix components suggests a parallel-computing
method using a traditional master/slave implementation. Each
submatrix is assigned to a slave computing node. Then Aitchison's
algorithm steps 1 and 2 can be solved in parallel in
straightforward fashion.

Aitchison's algorithm step 3 involves the solution of an rr ×
coefficient matrix, )( rXI + , which may be non-sparse. In terms
of a graph, the components of this matrix are assembled from the
edges connecting the partitioned subgraphs residing on the
computational slave nodes. In electrical-engineering jargon, these
edges are called interties. Aggregating this coefficient matrix from
the slaves' interties is a task that can be assigned to the
computational master node. Then the completion of
step 3 by the master node represents an algorithmic
bottleneck, as the slave nodes wait for completion of
this step by the master until Aitchison's algorithm step
4 can begin.

Optimal partitioning to reduce the order, r, of the
)( rXI +  coefficient matrix is important to optimizing

the performance of the diakoptics algorithm. The order
r is equal to the number of transmission-system nodes
having interties incident. Note that this number is not
necessarily equal to two times the number of interties,
as multiple interties may be incident at the same node.
Several techniques have been suggested for optimizing
this partitioning [3, 6].

Aitchison's algorithm step 4 can be accomplished by
passing the results of the calculation of zr in step 3 to
the slave nodes for computing step 4 in parallel.
Although the computation of step 4 depends on a
multiplication by Xn-r (which is an aggregate across all
the slave nodes from the calculation performed in step
2), the only non-zero components of Xn-r contributing
to the result of the multiplication that will be stored on
a slave are those components that are stored locally on

the slave. This is demonstrated in the example in equation (13).

This diakoptics algorithm for the calculation of power flow was
tested empirically using Los Alamos National Laboratory's
"Rockhopper" extreme-Linux supercomputer. The Rockhopper
supercomputer uses a cluster of 128 dual-processor 500-MHz
Pentium® III computers with MPI message passing using a
Myrinet 1.28 Gbit/s communication infrastructure.

Several software methods were combined to solve the problems
presented by the Aitchison algorithm. Solution of the submatrix
problems on the slave computational nodes was accomplished
using an optimized sparse symmetric matrix linear solver [8]. This
linear solver supports the storage and re-use of coefficient-matrix
factorization for improved solution speed in subsequent solutions.
Because the matrix )( rXI +  in Aitchison's step 3 may be both
non-sparse and non-symmetric, a conventional LU-decomposition
method was used for this step. This method also supported storage
and re-use of the factorization, permitting subsequent solutions
requiring only a backsubstitution procedure. Matrix partitioning
was accomplished using a method based on the Karypis, et al.
graph heuristic [6].

This implementation of the diakoptics algorithm for power-flow
calculation exhibited expected scaling behavior. Figure 2 shows
the performance of the diakoptics algorithm by plotting the time
required to complete a power-flow simulation as a function of the
number of slave processors. The power-flow simulation was a test
of completing 1000 different power-flow calculations for the
same transmission system. This study used a 9952-node,
12471-edge model of the transmission system of the Western
Systems Coordinating Council (WSCC) obtained from the
California Independent System Operator (Cal-ISO).
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Figure 2. Simulation Time vs. Number of Slaves



Initially, the simulation time decreases quickly with the number of
slave processor nodes. After reaching a minimum at 14 slave
nodes, the simulation time then increases slowly as more slave
nodes are used. The partitioning of the WSCC transmission
system achieves partitions of approximately equal size, and the
rank of each slave submatrix is approximately n/k where n is the
total number of transmission-system nodes and k is the number of
slave processors. However, as k increases, the number of intertie
nodes required to partition the transmission system also increases.
This number is the order, r, of the matrix )( rXI + .  As r
increases, the time required for Aitchison's step 3 soon
overwhelms the gain in performance achieved in steps 1 and 2
from increasing the number of slave nodes. Figure 3 shows r as a
function of the number of slave processors.

Empirical analysis of these results indicates that the
simulation time has an approximate O( 12 −+ kr )
dependence on the number of intertie nodes, r,  and the
number of slave processors, k.  These results model the
dependence of the simulation time upon the
performance of the Pissanetzky algorithm for small k
and upon the results of the partitioning algorithm when
r becomes large. Figure 4 shows the results of this
empirical model of the simulation time.

6 Conclusions
Diakoptics is a computational technique that presents
performance advantages for solution of nearly-singular
sets of sparse linear equations by a parallel computer
with conventional master/slave architecture.
Performance of the algorithm depends on a) having an
efficient linear solver for the sparse equations on the
slave nodes, b) having an efficient linear solver for the
non-sparse equations on the master node, and
c) efficient partitioning of the equations into
independent sub-problems with minimal graphical
interconnection. Solution of step 3 of Aitchison's

diakoptics algorithm presents a performance bottleneck that
depends strongly on the number of interconnections between the
components of a block-diagonal coefficient matrix. Efficient
partitioning to reduce the number of these interconnections is
essential.

The diakoptics algorithm should be effective for computations of
power flow in a commercial electric-power infrastructure.
Sparsity and connectivity characteristics of commercial electric-
power networks support the use of the diakoptics algorithm for
computational performance improvement.

Additional work is indicated in several areas. First, exploration of
metrics for quantifying the singularity of a matrix will strengthen

the assertion that diakoptics reduces the singularity of
the submatrices by changing the diagonal elements of
otherwise-singular matrices. Second, scaling studies
can be performed using synthetic networks, such as
trees and nearly-regular graphs, to control the sizes of
the partitioned networks and the interconnections
between them to test the model for scaling
performance. Third, further work is needed to test
alternative distributed algorithms (e.g., PETSc [2]) for
the Aitchison step 3, to evaluate possible performance
improvements. Finally, the performance of alternative
partitioning algorithms should be evaluated, as the
dependence of the performance of the Aitchison
algorithm on the number of intertie nodes presents a
limit to the performance improvement that can be
achieved through parallel processing.
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